|
В действительности иерархия классов строится, исходя из совсем другой
концепции производных классов, чем концепция интерфейс-реализация,
которая использовалась для абстрактных типов. Класс рассматривается
как фундамент строения. Но даже, если в основании находится абстрактный
класс, он допускает некоторое представление в программе и сам предоставляет
для производных классов какие-то полезные функции. Примерами узловых
классов могут служить классы rectangle ($$6.4.2) и satellite ($$6.5.1).
Обычно в иерархии класс представляет некоторое общее понятие, а
производные классы представляют конкретные варианты этого понятия.
Узловой класс является неотъемлемой частью иерархии классов. Он пользуется
сервисом, представляемым базовыми классами, сам обеспечивает определенный
сервис и предоставляет виртуальные функции и (или) защищенный
интерфейс, чтобы позволить дальнейшую детализацию своих операций в
производных классах.
Типичный узловой класс не только предоставляет реализацию
интерфейса, задаваемого его базовым классом (как это делает класс
реализации по отношению к абстрактному типу), но и сам расширяет
интерфейс, добавляя новые функции. Рассмотрим в качестве примера
класс dialog_box, который представляет окно некоторого вида на экране.
В этом окне появляются вопросы пользователю и в нем он задает свой
ответ с помощью нажатия клавиши или "мыши":
class dialog_box : public window { // ... public: dialog_box(const char* ...); // заканчивающийся нулем список // обозначений клавиш // ... virtual int ask(); };
Здесь важную роль играет функция ask() и конструктор, с помощью которого программист указывает используемые клавиши и задает их числовые значения. Функция ask() изображает на экране окно и возвращает номер нажатой в ответ клавиши. Можно представить такой вариант использования:
void user() { for (;;) { // какие-то команды dialog_box cont("continue", "try again", "abort", (char*) 0); switch (cont.ask()) { case 0: return; case 1: break; case 2: abort(); } } }
Обратим внимание на использование конструктора. Конструктор, как
правило, нужен для узлового класса и часто это нетривиальный
конструктор. Этим узловые классы отличаются от абстрактных классов,
для которых редко нужны конструкторы.
Пользователь класса dialog_box ( а не только создатель этого
класса) рассчитывает на сервис, представляемый его базовыми классами.
В рассматриваемом примере предполагается, что существует
некоторое стандартное размещение нового окна на экране. Если
пользователь захочет управлять размещением окна, базовый для
dialog_box класс window (окно) должен предоставлять такую возможность,
например:
dialog_box cont("continue","try again","abort",(char*)0); cont.move(some_point);
Здесь функция движения окна move() рассчитывает на определенные
функции базовых классов.
Сам класс dialog_box является хорошим кандидатом для построения
производных классов. Например, вполне разумно иметь такое окно,
в котором, кроме нажатия клавиши или ввода с мышью, можно задавать
строку символов (скажем, имя файла). Такое окно dbox_w_str строится
как производный класс от простого окна dialog_box:
class dbox_w_str : public dialog_box { // ... public: dbox_w_str ( const char* sl, // строка запроса пользователю const char* ... // список обозначений клавиш ); int ask(); virtual char* get_string(); //... };
Функция get_string() является той операцией, с помощью которой программист получает заданную пользователем строку. Функция ask() из класса dbox_w_str гарантирует, что строка введена правильно, а если пользователь не стал вводить строку, то тогда в программу возвращается соответствующее значение (0).
void user2() { // ... dbox_w_str file_name("please enter file name", "done", (char*)0); file_name.ask(); char* p = file_name.get_string(); if (p) { // используем имя файла } else { // имя файла не задано } // }
Подведем итог - узловой класс должен:
Не все, но многие, узловые классы будут удовлетворять условиям
1, 2, 6 и 7. Класс, который не удовлетворяет условию 6, походит
на конкретный тип и может быть назван конкретным узловым классом.
Класс, который не удовлетворяет условию 7, походит на абстрактный
тип и может быть назван абстрактным узловым классом. У многих
узловых классов есть защищенные члены, чтобы предоставить для
производных классов менее ограниченный интерфейс.
Укажем на следствие условия 4: для трансляции своей программы
пользователь узлового класса должен включить описания всех его
прямых и косвенных базовых классов, а также описания
всех тех классов, от которых, в свою очередь, зависят базовые классы.
В этом узловой класс опять представляет контраст с абстрактным типом.
Пользователь абстрактного типа не зависит от всех классов,
использующихся для реализации типа и для трансляции своей программы
не должен включать их описания.